Durability analysis method of after processor of natural gas engine
-
摘要: 考虑热疲劳和振动疲劳损伤,建立天然气发动机后处理器的综合损伤模型和计算方法。通过热机耦合分析,模拟计算后处理器等效塑性应变幅值Δε的分布结果,得到危险点CP1的Δε值为1.02%。通过随机振动分析计算后处理器应力分布结果,CP1的最大应力值为50.4 MPa。根据综合累积损伤模型,计算得到CP1的综合累积损伤为1.223,不满足耐久性指标。通过改变左隔板焊接方式进行结构优化,优化方案中CP1的综合累积损伤为0.059,满足耐久性指标。研究结果可为天然气发动机后处理器的结构耐久性评估和结构优化提供参考。Abstract: Considering the damage of thermal fatigue and vibration fatigue, the theoretical model and calculation process of comprehensive cumulative damage are established. By thermo-mechanical coupling analysis, the distribution of amplitude of equivalent plastic strain (Δε) of after processor is simulated, and the Δε of value of the risk point CP1 is 1.02%. The random vibration analysis is conducted, and the stress of the risk point CP1 is 50.4 MPa. According to the comprehensive damage calculation, the comprehensive damage value of the risk point CP1 is 1.223, which cannot meet the durability requirement. The structure is optimized by changing the welding method of the left partition, and the comprehensive damage of the risk point CP1 is 0.059, which can meet the durability requirement. The results can provide good guidance for durability evaluation and structure optimization of the after processor of natural gas engine.
-
Key words:
- after processor /
- natural gas engine /
- durability analysis /
- thermal fatigue /
- random vibration /
- comprehensive damage
-
-
[1] WATANABE Y, SHIRATANI K, IWANAGA S, et al. Thermal fatigue life prediction for stainless steel exhaust manifold[C]//SAE 1998 World Congress and Exhibition, 1998. DOI:10.4271/980841.
[2] CHINOUILH G, SANTACREU P O, HERBELIN J M. Thermal fatigue design of stainless steel exhaust manifolds[C]//SAE 2007 World Congress and Exhibition, 2007. DOI:10.4271/2007-01-0564.
[3] 李相旺,黄凤琴,张志明,等.某增压发动机排气热端耐久性分析与优化[J].汽车工程, 2017, 39(10):1130-1135.DOI:10.19562/j.chinasae.qcgc.2017.10.006.
[4] 刘志恩,胡雅倩,颜伏伍,等.发动机排气歧管热模态分析及试验研究[J].汽车工程, 2015, 37(3):359-365. DOI:10.19562/j.chinasae.qcgc.2015.03.019.
[5] MANSON S S. Fatigue:a complex subject-some simple approximation[J]. Experimental Mechanics, 1965, 5(7):193-226.
[6] 董劲,赵骞,王希杰,等.汽车排气歧管热机械疲劳CAE分析方法[J].内燃机, 2014(1):45-47.
[7] 陈东兴,熊锐,吴坚,等.基于Abaqus的发动机排气歧管总成模态分析[J].广东工业大学学报, 2013, 30(2):103-106. DOI:10.3969/j.issn.1007-7162.2013.02.020.
[8] 杨小东,李东晗,齐冬亮,等.乘用车排气净化器频响分析方法[J].计算机辅助工程, 2019, 28(1):18-21. DOI:10.13340/j.cae.2019.01.004.
[9] 陈正国,杨小东,褚霞,等.乘用车排气净化器热疲劳分析方法[J].计算机辅助工程, 2021, 30(3):44-48. DOI:10.13340/j.cae.2021.03.008.
[10] YANG X D, CHEN Z G, ZHANG Y H, et al. Research and application for thermal fatigue analysis of V-shape specimen[C]//Proceedings of China SAE Congress 2023, 2023:711-723.
[11] 杨新华,陈传尧.疲劳与断裂[M]. 2版.武汉:华中科技大学出版社, 2018:16-19.
[12] 陈正国,杨小东,张允华,等.乘用车净化器高温失效分析研究[C]//2024世界内燃机大会, 2024:1-8.
计量
- 文章访问数: 200
- PDF下载数: 79
- 施引文献: 0